

Funct

Product Information

3 RF Out

EC1119C

Product Features

- DC 3.5 GHz
- +18.6 dBm P1dB at 1 GHz
- +36 dBm OIP3 at 1 GHz
- 14.8 dB Gain at 1 GHz
- 5.5 dB Noise Figure at 2 GHz
- Available in SOT-86, SOT-89 and lead-free / green SOT-89 Package Styles
- Internally matched to 50Ω

Applications

- Mobile Infrastructure
- CATV / DBS
- W-LAN / ISM
- RFID
- Defense / Homeland Security
- Fixed Wireless

Output IP3⁽²⁾ Noise Figure Device Voltag Device Curren

Test conditi

30IP measuppression
Large-Sign

Specifications⁽¹⁾

Product Description

The EC1119 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 1 GHz, the EC1119 typically provides 14.8 dB of gain, +36 dBm Output IP3, and +18.6 dBm P1dB.

The EC1119 consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT process technologe and only requires DC-blocking capacitors, a bias restruand an inductive RF choke for operation. The devices ideal for wireless applications and is available in low-ossurface-mountable plastic SOT-86 and SOT-89 packages. The EC1119 is also available in a lead-free/greent HScompliant SOT-89 package. All devices are for the CF and DC tested.

The broadband MMIC amplifier can be actively approach various current and next generation where is technologies such as GPRS, GSM, CDMA, and CDMA. Intervition, the EC1119 will work for other various application within the DC to 3.5 GHz frequency areas such as V and

fixed wireless.

July V	le l	, ,	nce ⁽⁴⁾
STOR	akee	rtorma	nce 🖤
	$(\circ/)^{\sim}$		

Parameter	Units	Min	TYCON	lax_	ara Ser	Units		Тур	ical	
Operational Bandwidth	MHz	DC	3	500 5	Frequery	MHz	500	900	1900	2140
Test Frequency	MHz			()	S2	dB	15	14.8	13.8	13
Gain	dB		14.8 (25	(A)	dB	-32	-22.5	-20	-19.5
Output P1dB	dBm	20	+18.6		22	dB	-25.5	-25	-25	-25
Output IP3 ⁽²⁾	dBm	20	+36	D &	Output P1dB	dBm	+19	+18.6	+18.6	+18.5
Test Frequency	MHz	\sim		0,G)	Output IP3 ⁽²⁾	dBm	+36	+36	+33.2	+33
Gain	dB	\sim	B	15	Noise Figure	dB	4.5	4.9	5	5.2
Large-signal Gain ⁽³⁾	dB	5.	SP2 (5	4. Test conditions: $T = 25^{\circ} C_{\gamma}$	Supply Voltage = +6	5 V. Device Vo	ltage = +6V R		O System
Input Return Loss	(\mathcal{D})		20 0 2				,		0as 10 11, 00 1	
Output Return Loss	72	(0	N 20							
Output P1dB	d'Bm	S	1020							

Absolute Maximon Rating

(0)	
_Parameter	Rating
Operating Case Tel V Juure	-40 to +85 °C
Storag Oper	-55 to +150 °C
Device rree	130 mA
R Power continuous)	+12 dBm
On Teperature	+250 °C

n which have above any of these parameters may cause permanent damage.

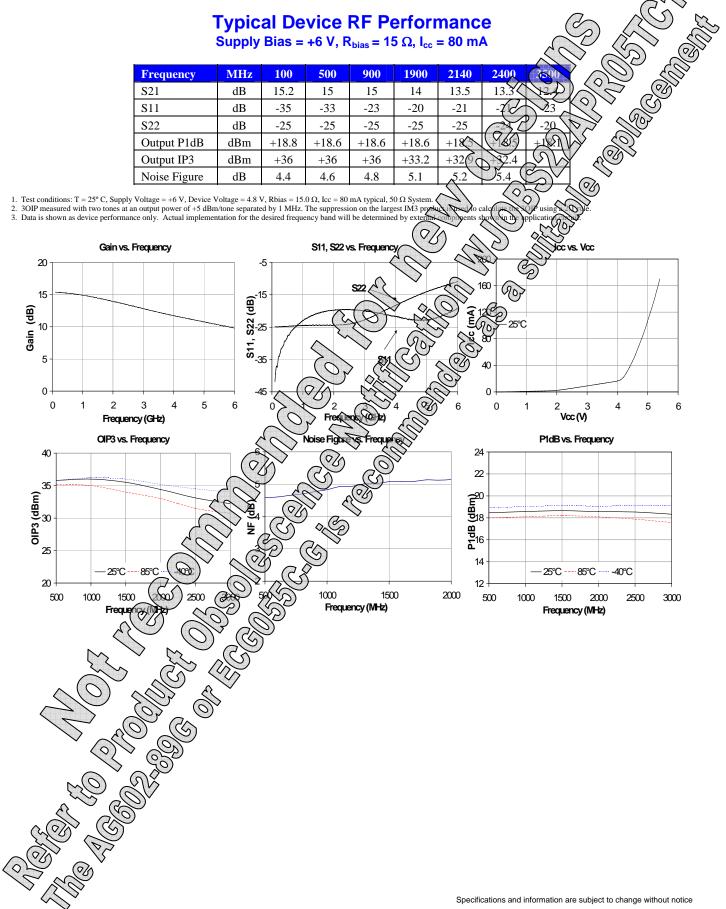
Ordering Information

Part No.	Description
EC1119B	InGaP HBT Gain Block (lead-tin SOT-89 Pkg)
EC1119B-G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-89 Pkg)
EC1119C	InGaP HBT Gain Block (SOT-86 Pkg)

Specifications and information are subject to change without notice

80

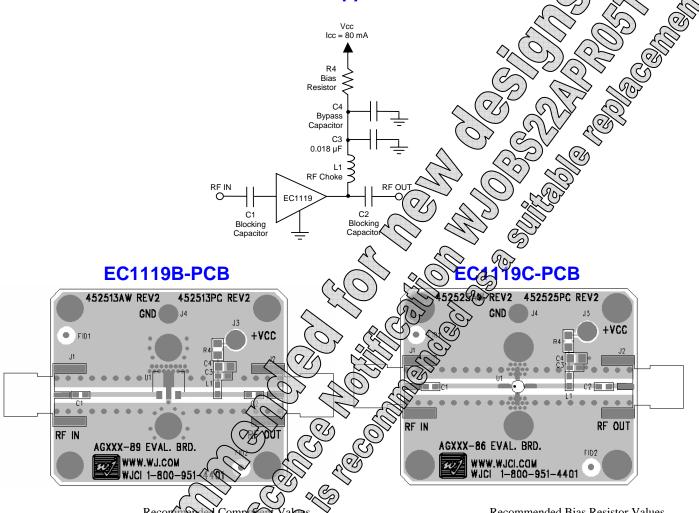
tone separated by 1 MHz. The e 30IP using a 2:1 rule.


dBm

 $6 \text{ V}, \text{Rbias} = 15 \Omega, 50 \Omega \text{ System}.$

The Communications Edge TM

Product Informa


Specifications and information are subject to change without notice

The Communications Edge TM

Product Informa

Recommended Application Circuit

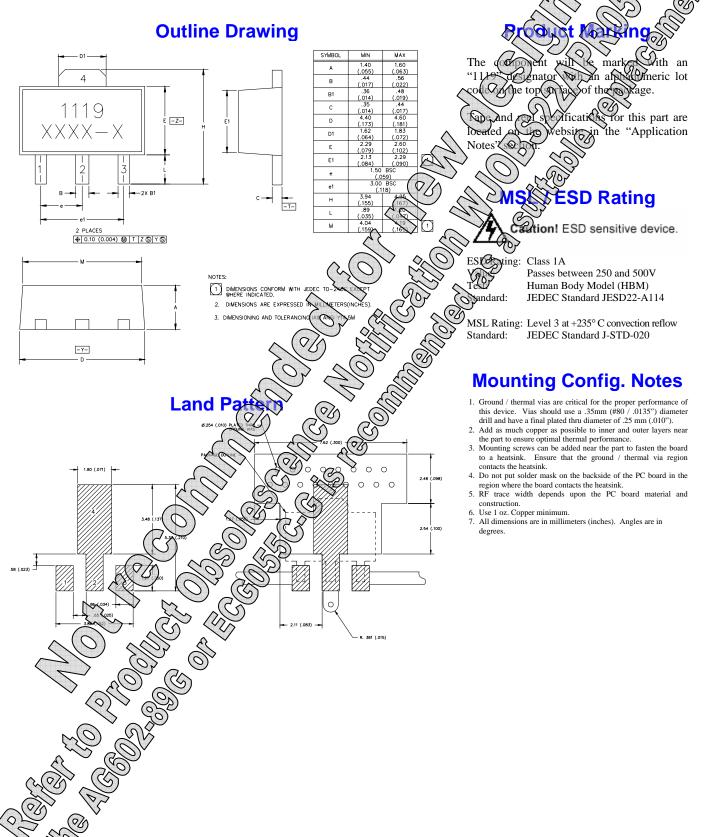
Reference	Free Parcy (ML)									
Designator	50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	900	1908	2200	2500	3500			
L1	820 nH	(C26 pH	(9) A)		22 nH	18 nH	15 nH			
C1, C2, C4	.018 µF	pF_	(D)F	(IAGF	68 pF	56 pF	39 pF			

ments are (ege ded frequency of operation. hieve optimal broadband performance: 1. The proper values for the

2. The following values are ined on the bn bo

	Ref. Desig.	Value Type	Size
	2 m	wir wound inductor	0603
. (and a	F chip pacitor	0603
\sim	$(\Theta) \land \langle \Theta \rangle$	9.018 thip capacitor	0603
\sim	C4 (0)	Do No lace	
12	R4 (O)	1 tolerance	0805
~	S C		
$\sum_{i=1}^{n}$	O N	>	
Con Contraction			

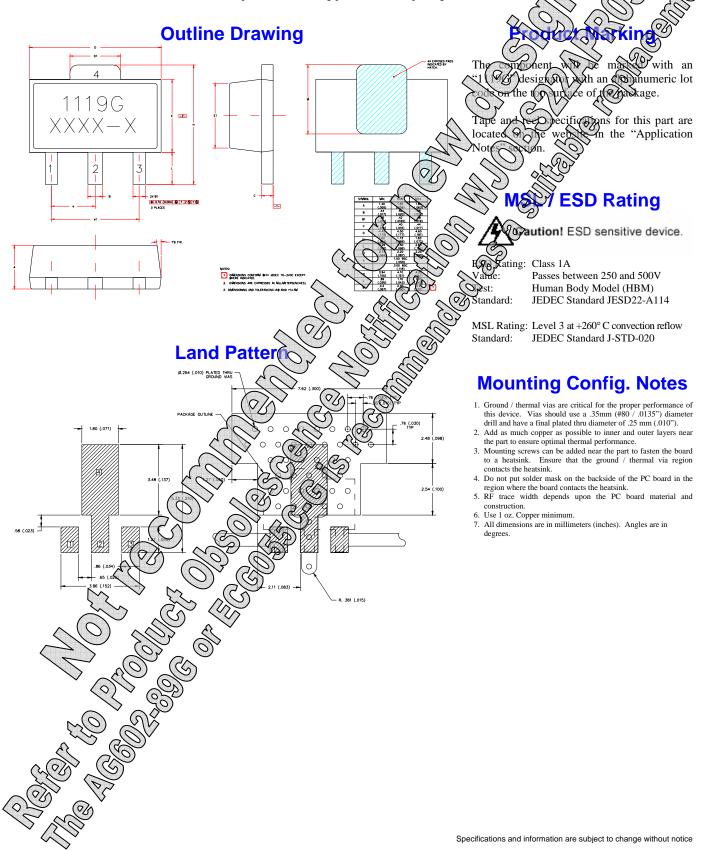
Supply Voltage	R1 value	Size
6 V	15.0 ohms	0805
7 V	27.5 ohms	1210
8 V	40 ohms	1210
9 V	53 ohms	2010
10 V	65 ohms	2010
12 V	90 ohms	2512


The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +6 V. A 1% tolerance resistor is recommended.

Product Information

EC1119B (SOT-89 Package) Mechanical Information

This package may contain lead-bearing materials. The plating material on the leads is S



Product Information

EC1119B-G (Green / Lead-free SOT-89 Package) Mechanical (of orm/)

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflow temperature) and (maximum 245°C reflow temperature) soldering processes. The plating material on the lead is the Au

WJ Communications, Inc • Phone 1-800-WJ1-4401 • FAX: 408-577-6621 • e-mail: sales@wj.com • Web site: www.wj.com

Product Informa

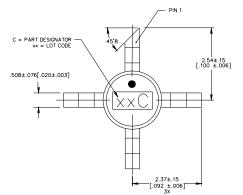
"C"

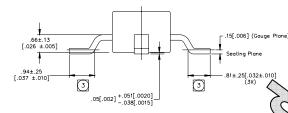
'a

1.52±.127 [.060±.005

2.16±.127 [.085±.005]

2.286 (.090)


.152 ±.051 [.006 ±.002]


0'8-8'8

The com

ıG

Outline Drawing

7.620

A CONTRACTION OF THE CONTRACT OF THE CONTRACT.

Land Pat

digit ackage. des Shis part are "Application Rating

on! ESD sensitive device.

SD Rate Class 1A

rd:

Passes between 250 and 500V Human Body Model (HBM) JEDEC Standard JESD22-A114

SL Rating: Level 1 at +235° C convection reflow Standard: JEDEC Standard J-STD-020

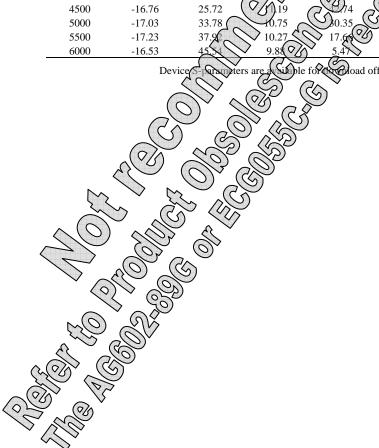
Mounting Config. Notes

1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").

- 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- 7. All dimensions are in millimeters (inches). Angles are in degrees.

The Communications Edge TM

Product Information


Typical Device S-Parameters – EC1119B / EC1119B

S-Parameters (V	$d_{\text{device}} = +4.8 \text{ V},$	I _{CC} = 80 mA, T	= 25°C, calibra	ted to device le	ads)		
Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang) S22 (1b) S22 ang)	
50	-13.68	176.59	14.77	177.82	-18.65	-0.55	
500	-14.01	153.66	14.53	159.01	-18.56	-7.01	
1000	-13.92	131.55	14.23	139.34	-18.53	-13.71	
1500	-13.50	111.69	13.78	120.21	-18.54	-20.59 213.64 0.08 907	
2000	-13.09	94.24	13.37	101.77	-18.45	-27.67 -14.5 (128.42)	
2500	-12.45	78.40	12.79	83.65	-18.45	-3. 00 -13-2 114	
3000	-11.98	64.36	12.18	66.77	-18.45	-4.00 - 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
3500	-11.08	52.22	11.59	50.14	-18.54	-49.2 ~ (9.2) ~ 89.21	
4000	-10.24	41.68	11.01	34.26	-18.59	57.20 57.20	
4500	-9.23	32.47	10.39	18.45	-18.76	32 67.58	
5000	-8.35	25.22	9.77	3.11	-18.89	72.73 -7.13 57.41	
5500	-7.32	17.75	9.15	-11.87	-19.1007	-80,58 -6,6 48.08	
6000	-6.62	11.34	8.54	-26.85	-123-0	-8 -5 -5 38.50	
					AC		

Typical Device S-Para

S-Parameters (V	$_{\text{device}} = +4.8, I_{CO}$	$_{\rm C} = 80 \text{ mA}, \text{ T} = 100 \text{ mA}$	25°C, calibrat	ed to device lead	s) N			
Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (08)	S12 (202)	S22 (dB)	S22 (ang)
50	-29.84	171.31	15.62	178.0	-18 907	225	-33.15	-0.11
500	-27.21	114.27	15.45	>101,35	0. (8)	Q10:25	-36.51	-20.37
1000	-23.51	84.84	15.11	(WA)	in the second	4.15	-38.59	-13.39
1500	-21.04	60.73	14.59	7 20.59	8.74	-6.46	-40.63	-110.86
2000	-18.84	47.72	14.10	10.74	218.63	-8.51	-32.74	167.54
2500	-18.08	38.70	13.44	> 95/42(0)	-18	-11.20	-27.40	153.51
3000	-17.09	29.43	par)		-1000	-13.35	-22.54	141.19
3500	-16.67	28.85	(1925)	68.0	C C T	-16.25	-20.09	131.04
4000	-17.03	26.34	The state	(372° (8.24	-18.90	-17.22	125.60
4500	-16.76	25.72	19	$C^{3/14}$	2-18.07	-22.13	-15.23	115.08
5000	-17.03	33.78	10.75	0.35) -17.98	-25.40	-13.55	108.62
5500	-17.23	37.9	10.27	17.00	-17.87	-29.21	-12.07	99.49
6000	-16.53	45.5	9.88	5.4	-17.79	-32.98	-10.88	92.53

ble for the website at: http://www.wj.com

